Home

Awesome

PyTorch implementation of Res2Net

This repository contains code for Res2Net based on Res2Net: A New Multi-scale Backbone Architecture implemented in PyTorch.

Requirements

Training

CIFAR-100

python train.py --dataset cifar100 --arch res2next29_6cx24wx4scale
python train.py --dataset cifar100 --arch res2next29_8cx25wx4scale
python train.py --dataset cifar100 --arch res2next29_6cx24wx6scale
python train.py --dataset cifar100 --arch res2next29_6cx24wx4scale_se
python train.py --dataset cifar100 --arch res2next29_8cx25wx4scale_se
python train.py --dataset cifar100 --arch res2next29_6cx24wx6scale_se

ImageNet

python train.py --dataset imagenet --imagenet-dir </path/to/data> --arch res2net50 --epoch 100 --milestones 30 --weight-decay 1e-4
python train.py --dataset imagenet --imagenet-dir </path/to/data> --arch res2net101 --epoch 100 --milestones 30 --weight-decay 1e-4
python train.py --dataset imagenet --imagenet-dir </path/to/data> --arch res2net152 --epoch 100 --milestones 30 --weight-decay 1e-4
python train.py --dataset imagenet --imagenet-dir </path/to/data> --arch res2next50_32x4d --epoch 100 --milestones 30 --weight-decay 1e-4
python train.py --dataset imagenet --imagenet-dir </path/to/data> --arch se_res2net50 --epoch 100 --milestones 30 --weight-decay 1e-4

Results

Coming soon...

<!-- | Model | Error rate | Loss | Error rate (paper) | |:------------------------------------------------|:----------:|:-------:|:------------------:| | WideResNet28-10 baseline | 3.82| 0.158 | 3.89| | WideResNet28-10 +RICAP | **2.82**| 0.141 | **2.85**| | WideResNet28-10 +Random Erasing | 3.18|**0.114**| 4.65| | WideResNet28-10 +Mixup | 3.02| 0.158 | 3.02| Learning curves of loss and accuracy. ![loss](loss.png) ![acc](acc.png) -->