Home

Awesome

PyTorch implementation of AutoAugment

This repository contains code for AutoAugment (only using paper's best policies) based on AutoAugment: Learning Augmentation Policies from Data implemented in PyTorch.

example

Requirements

Training

CIFAR-10

WideResNet28-10 baseline on CIFAR-10:

python train.py

WideResNet28-10 +Cutout, AutoAugment on CIFAR-10:

python train.py --cutout True --auto-augment True

Results

CIFAR-10

ModelError rateLossError rate (paper)
WideResNet28-10 baseline3.820.15763.87
WideResNet28-10 +Cutout3.400.12803.08
WideResNet28-10 +Cutout, AutoAugment2.910.09942.68

Learning curves of loss and accuracy.

loss

acc