Awesome
Full Resolution Image Compression with Recurrent Neural Networks
https://arxiv.org/abs/1608.05148v2
Requirements
- PyTorch 0.2.0
Train
python train.py -f /path/to/your/images/folder/like/mscoco
Encode and Decode
Encode
python encoder.py --model checkpoint/encoder_epoch_00000005.pth --input /path/to/your/example.png --cuda --output ex --iterations 16
This will output binary codes saved in .npz
format.
Decode
python decoder.py --model checkpoint/encoder_epoch_00000005.pth --input /path/to/your/example.npz --cuda --output /path/to/output/folder
This will output images of different quality levels.
Test
Get Kodak dataset
bash test/get_kodak.sh
Encode and decode with RNN model
bash test/enc_dec.sh
Encode and decode with JPEG (use convert
from ImageMagick)
bash test/jpeg.sh
Calculate SSIM
bash test/calc_ssim.sh
Draw rate-distortion curve
python test/draw_rd.py
Result
LSTM (Additive Reconstruction), before entropy coding
Rate-distortion
kodim10.png
Original Image
Below Left: LSTM, SSIM=0.865, bpp=0.125
Below Right: JPEG, SSIM=0.827, bpp=0.133
Below Left: LSTM, SSIM=0.937, bpp=0.250
Below Right: JPEG, SSIM=0.918, bpp=0.249
Below Left: LSTM, SSIM=0.963, bpp=0.375
Below Right: JPEG, SSIM=0.951, bpp=0.381
What's inside
train.py
: Main program for training.encoder.py
anddecoder.py
: Encoder and decoder.dataset.py
: Utils for reading images.metric.py
: Functions for Calculatnig MS-SSIM and PSNR.network.py
: Modules of encoder and decoder.modules/conv_rnn.py
: ConvLSTM module.functions/sign.py
: Forward and backward for binary quantization.
Official Repo
https://github.com/tensorflow/models/tree/master/compression