Awesome
BEGAN : Boundary Equilibrium Generative Adversarial Networks
<br>Overview
Pytorch implementation of BEGAN(arxiv:1703.10717)
Objectives
Architectures
Measure of Convergence
<br>
Dependencies
python 3.6.4
pytorch 0.3.1.post2
visdom
<br>
Usage
initialize visdom.
python -m visdom.server
train using CIFAR10 dataset. checkpoint will automatically be saved in checkpoint/run1
for every epoch.
python main.py --model_type skip_repeat --dataset cifar10 --env_name run1
you can load checkpoint and continue training. make sure --env_name
matched to previous runs.
python main.py --model_type skip_repeat --dataset cifar10 --env_name run1 --load_ckpt True
you can check the training process.
localhost:8097
you can also train using your own dataset. make sure your dataset is appropriate for pytorch ImageFolder class. please check data directory tree below.
python main.py --model_type skip_repeat --dataset custom_dataset --env_name run1
<br>
data directory tree
.
└── data
└── CelebA
└── img_align_celeba
├── 000001.jpg
├── 000002.jpg
├── ...
└── 202599.jpg
├── custom_dataset
└── folder1
├── image1.jpg
├── ...
└── ...
<br>
Results : CIFAR10(32x32)
python main.py --dataset cifar10 --image_size 32 --batch_size 16 --model_type skip_repeat --hidden_dim 64 --n_filter 32 --n_repeat 2
fixed generation
random generation
measure of convergence
<br>
Results : CelebA(aligned, 64x64)
(you can download CelebA dataset here)
python main.py --dataset celeba --image_size 64 --batch_size 16 --model_type skip_repeat --hidden_dim 64 --n_filter 64 --n_repeat 2
fixed generation
random generation
interpoloation
<br>
References
- BEGAN : Boundary Equilibrium Generative Adversarial Networks(arxiv:1703.10717)