Awesome
Ensemble Model with Batch Spectral Regularization and Data Blending for Cross-Domain Few-Shot Learning with Unlabeled Data
Code release for Track 2 in Cross-Domain Few-Shot Learning (CD-FSL) Challenge .
Enviroment
Python 2.7.16
Pytorch 1.0.0
Steps
-
Prepare the source dataset miniImageNet and four target datasets CropDisease, EuroSAT, ISIC and ChestX.
-
Modify the paths of the datasets in
configs.py
according to the real paths. -
Train base models on miniImageNet (pre-train)
• Train single model
python ./train_bsr.py --model ResNet10 --train_aug
• Generate projection matrices and train ensemble model
python ./create_Pmatrix.py python ./train_Pbsr.py --model ResNet10 --train_aug
-
Fine-tune and test for the 5-shot task in CropDisease as an example (change
n_shot
parameter to 20, 50 for 20-shot and 50-shot evaluations and changedtarget
parameter to EuroSAT, ISIC, ChestX for the other target domains)• Test the BSDB and BSDB+LP methods for single model
python ./finetune_lp_bsdb.py --model ResNet10 --train_aug --use_saved --dtarget CropDisease --n_shot 5
The
use_saved
flag is used to test with our saved models. You can close it to test with the reproduced models.Example output:
BSDB: 600 Test Acc = 93.48% +- 0.42% BSDB+LP: 600 Test Acc = 95.31% +- 0.37%
• Test the BSDB and BSDB+LP methods for ensemble model
python ./finetune_P_lp_bsdb.py --model ResNet10 --train_aug --use_saved --dtarget CropDisease --n_shot 5
Example output:
BSDB (Ensemble): 600 Test Acc = 94.05% +- 0.41% BSDB+LP (Ensemble): 600 Test Acc = 95.93% +- 0.37%