Awesome
ms-convSTAR
Pytorch implementation for hierarchical time series classification with multi-stage convolutional RNN described in:
[Paper] - [Poster]
<img src="https://github.com/0zgur0/ms-convSTAR/blob/master/imgs/model_drawing.png">If you find our work useful in your research, please consider citing our paper:
@article{turkoglu2021msconvstar,
title={Crop mapping from image time series: deep learning with multi-scale label hierarchies},
author={Turkoglu, Mehmet Ozgur and D'Aronco, Stefano and Perich, Gregor and Liebisch, Frank and Streit, Constantin and Schindler, Konrad and Wegner, Jan Dirk},
journal={Remote Sensing of Environment},
volume={264},
year={2021},
publisher={Elsevier}
}
ZueriCrop Dataset
Download the dataset via https://polybox.ethz.ch/index.php/s/uXfdr2AcXE3QNB6
Getting Started
Train the model e.g., for fold:1 with
python3 train.py --data /path/to/data --fold 1
Test the trained model e.g., for fold:1 with
python3 test.py --data /path/to/data --fold 1 --snapshot /path/to/trained_model