Home

Awesome

SLR

isolated & continuous sign language recognition using CNN+LSTM/3D CNN/GCN/Encoder-Decoder

Requirements

Isolated Sign Language Recognition

CNN+LSTM

  1. four layers of Conv2d + one layer of LSTM

    DatasetClassesSamplesBest Test AccBest Test Loss
    CSL_Isolated10025,00082.08%0.734426
    CSL_Isolated500125,00071.71%1.332122
  2. ResNet + one layer of LSTM

    DatasetClassesSamplesBest Test AccBest Test Loss
    CSL_Isolated10025,00093.54%0.245582
    CSL_Isolated500125,00083.17%0.748759

3D CNN

  1. three layers of Conv3d

    DatasetClassesSamplesBest Test AccBest Test Loss
    CSL_Isolated10025,00058.86%1.560049
    CSL_Isolated500125,00045.07%2.255563
  2. 3D ResNet

    MethodDatasetClassesSamplesBest Test AccBest Test Loss
    ResNet18CSL_Isolated10025,00093.30%0.246169
    ResNet18CSL_Isolated500125,00079.42%0.800490
    ResNet34CSL_Isolated10025,00094.78%0.207592
    ResNet34CSL_Isolated500125,00081.61%0.750424
    ResNet50CSL_Isolated10025,00094.36%0.232631
    ResNet50CSL_Isolated500125,00083.15%0.803212
    ResNet101CSL_Isolated10025,00095.26%0.205430
    ResNet101CSL_Isolated500125,00083.18%0.751727
  3. ResNet (2+1)D

    DatasetClassesSamplesBest Test AccBest Test Loss
    CSL_Isolated10025,00098.68%0.043099
    CSL_Isolated500125,00094.85%0.234880

GCN

DatasetClassesSamplesBest Test AccBest Test Loss
CSL_Skeleton10025,00079.20%0.737053
CSL_Skeleton500125,00066.64%1.165872

Skeleton+LSTM

DatasetClassesSamplesBest Test AccBest Test Loss
CSL_Skeleton10025,00084.30%0.488253
CSL_Skeleton500125,00070.62%1.078730

Continuous Sign Language Recognition

Encoder-Decoder

Encoder is ResNet18+LSTM, and Decoder is LSTM

DatasetSentencesSamplesBest Test WerBest Test Loss
CSL_Continuous10025,0001.01%0.034636
CSL_Continuous_Char10025,0001.19%0.049449

References